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Abstract

Small and marginal farmers in India encounter significant barriers in accessing
emerging carbon markets due to high transaction costs, limited bargaining power,
and resource constraints. In response, the Government of India has proposed a
voluntary carbon market (VCM) for the agriculture sector to incentivize sustain-
able practices and support climate goals.However, fair pricing, equitable revenue
distribution, and effective participation mechanisms remain critical challenges.
This study addresses these issues using a dual approach.
(1) Cooperative Game Theory Approach: we apply cooperative game theory to
examine coalition formation among farmers—primarily through Farmer Producer
Organizations—assessing the benefits of aggregation, stability of coalitions via the
Core concept, and the fairness of revenue distribution through the Shapley value.
(2) Mechanism Design Approach: we investigate mechanism design for carbon
credit pricing and trading by comparing the performance of Shapley-based alloca-
tion with traditional auction mechanisms such as the Vickrey-Clarke-Groves (VCG)
auction.
Simulation results on synthetic yet representative data indicate that farmer coali-
tions can substantially enhance individual payoffs, with the Shapley allocation con-
sistently ensuring equitable outcomes and satisfying individual rationality—unlike
conventional auction methods. These findings underscore the importance of careful
parameter calibration and offer actionable insights for designing an efficient and
equitable VCM tailored to the needs of Indian agriculture.
The implementations of the models, simulations, and analysis discussed in this
study are available in the GitHub repository. 1

1 Introduction

Agriculture forms the backbone of India’s economy, contributing significantly to the GDP (nearly
18%) and supporting the livelihoods of over half its population[17, 18]. The sector is vital not only
for national food security but also for sustaining rural economies and social well-being. However,
Indian agriculture faces mounting pressures from rising input costs, land tenure complexities[16], and,
critically, the impacts of climate change[26]. Increased frequency of extreme weather events, coupled
with the sector’s own contribution to greenhouse gas (GHG) emissions[18], This brings two main
challenges: making farming stronger against problems and reducing harm to the environment. India
has committed to ambitious climate targets, including significant carbon sequestration goals under
its Nationally Determined Contribution (NDC)[19]. Therefore, embracing sustainable agricultural
methods is critical for long-term viability.
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Recognizing these challenges, the Government of India has taken steps to promote sustainability
within the sector. A key recent initiative is the proposed framework for a Voluntary Carbon Market
(VCM) in agriculture, detailed in the "Framework for Voluntary Carbon Market In Agriculture
Sector (2024)" by the Ministry of Agriculture and Farmers Welfare[17]. The Voluntary Carbon
Market (VCM) aims to incentivize farmers to adopt environmentally sustainable practices, such as
agroforestry, conservation tillage, improved water management, reduced chemical fertilizer use, and
enhancing soil organic carbon (SOC)—by enabling them to generate and sell carbon credits[17]. This
mechanism leverages the potential for carbon sequestration and emission reduction within agriculture,
potentially contributing significantly to national climate goals and generating substantial economic
value[14]. It creates a potential new revenue stream, particularly crucial for India’s agricultural
landscape, which is dominated by small (less than 2 hectares) and marginal farmers who cultivate
over 86% of the vast agricultural land [approx. 60% of total land area, 17, 31].

While the VCM framework offers a promising pathway, its successful implementation hinges on
overcoming significant hurdles, especially for smallholder farmers. These farmers often face high
transaction costs associated with monitoring, reporting, and verification (MRV) required for carbon
credit generation, possess limited technical knowledge and resources for adopting new practices, and
lack bargaining power when dealing individually with credit buyers or project developers [6, 17, 2].
The government framework acknowledges these issues and promotes collective action through Farmer
Producer Organizations (FPOs) or similar community-based bodies to aggregate farmers, reduce
costs, and facilitate market access [17, 39]. However, critical questions remain regarding how the
collective benefits generated by these FPOs should be fairly distributed among participating farmers
and how the market for trading these credits should be structured to ensure fairness, efficiency, and
robust participation.

This paper addresses these critical questions by applying analytical tools from game theory and
mechanism design to the proposed Indian agricultural VCM. Our work focuses on two primary
objectives aligned with the challenges identified:

(1) Analyzing Coalition Formation and Fair Allocation in FPOs: Using cooperative game
theory, we model FPOs as coalitions of farmers working together to generate carbon
credits. We aim to understand the conditions under which such coalitions are stable (i.e.,
the framework ensures that farmers have a continued incentive to stay within the FPO.)
using the concept of the Core[10]. Furthermore, we investigate methods for fair and
equitable distribution of the collective revenue generated from carbon credit sales among
FPO members, employing the Shapley value[29, 35] as a key solution concept that allocates
value based on marginal contributions. We model the potential synergy or economies of
scale within the coalition using a characteristic value function.

(2) Designing and Evaluating Market Mechanisms for Carbon Credit Trading: We utilize
mechanism design principles[23, 21] to explore rules for pricing and trading the agricultural
carbon credits generated. The goal is to identify mechanisms that are incentive-compatible
(encouraging truthful reporting of costs or values), transparent, and fair, particularly con-
sidering the heterogeneity among farmers[37]. We specifically simulate and compare the
performance of allocation mechanisms derived from cooperative game theory (like Shapley
value-based distribution) against standard auction formats like the Vickrey-Clarke-Groves
(VCG) auction[15, 4, 36], evaluating them based on metrics like farmer profitability, fairness
(Gini coefficient), and individual rationality (IR).

By simulating farmer interactions within coalitions and evaluating different market structures, this
study provides quantitative insights into the potential outcomes of the proposed VCM. We analyze
the impact of key parameters, such as the degree of synergy within FPOs and the design of the
trading mechanism, on farmer participation, profitability, and the overall equity of the market. The
findings aim to inform policymakers and stakeholders on structuring an effective VCM that truly
benefits India’s small and marginal farmers while contributing to national climate and sustainability
objectives.

2 Literature Review

The development of a Voluntary Carbon Market (VCM) for the Indian agriculture sector intersects
several fields of study, primarily environmental economics, cooperative game theory, and mechanism
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design. This section reviews key literature relevant to the challenges and approaches discussed in this
paper, particularly focusing on farmer cooperation and market design for carbon credits generated by
smallholders.

2.1 Voluntary Carbon Markets and Agricultural Challenges

The concept of using market-based mechanisms to address climate change has evolved significantly
since the initial frameworks like the Kyoto Protocol. While compliance markets exist, voluntary
carbon markets (VCMs) have gained prominence, driven by corporate net-zero commitments and indi-
vidual desire to offset emissions [26]. The Paris Agreement’s Article 6 further provides mechanisms
for international cooperation and market-based approaches [17].

Applying VCM principles to agriculture, however, presents distinct challenges [37]. Unlike indus-
trial point sources, agricultural emissions and sequestration are dispersed across numerous, often
small, landholdings. Quantifying carbon benefits from practices like improved soil management
or agroforestry involves biological complexities and uncertainties, demanding robust Monitoring,
Reporting, and Verification (MRV) protocols [7]. Transaction costs associated with MRV and project
development can be prohibitively high for individual smallholder farmers, who dominate the In-
dian agricultural landscape [6, 16]. Furthermore, issues of land tenure (leased vs. owned land),
information asymmetry, limited access to finance for adopting sustainable practices, and ensuring
’additionality’ (proving credits represent activity beyond business-as-usual) are critical hurdles [17].
The Indian government’s framework explicitly acknowledges these difficulties and highlights the
need for aggregation and capacity building [17]. National initiatives promoting sustainable methods
like Natural Farming also align with the goals of agricultural VCMs [24, 9].

2.2 Cooperative Game Theory for Farmer Aggregation

Given the necessity of aggregation to overcome transaction costs and enhance bargaining power,
Farmer Producer Organizations (FPOs) are positioned as key enablers in the Indian agricultural VCM
[17]. Cooperative game theory provides a helpful framework to examine how farmer coalitions form,
remain stable, and function internally [10].

Modeling Coalition Value: The potential benefits derived by an FPO (coalition S) depend on
the collective actions of its members (N ). This is captured by the characteristic function v(S),
representing the total value (e.g., net revenue from carbon credits) the coalition S can generate.
Modeling this function realistically is crucial. Approaches often consider additive components
(sum of individual contributions) and non-additive components representing synergies or costs. For
instance, [39] model FPO benefits for biopesticide adoption, while [1, 20] analyze environmental
games with spatial externalities where cooperation yields supra-additive benefits. Our work employs
a functional form

v(S) = α
∑
i∈S

ri + β(
∑
i∈S

ri)
2

where:

• ri is the baseline payoff for farmer i,

• α scales the baseline contribution, and

• β models the quadratic synergy/economy of scale effect.

The choice and estimation of α and β significantly influence the predicted outcomes, as shown in our
experiments.

Coalition Stability: The Core, A fundamental question is whether an FPO can maintain its
membership. If a subgroup of farmers can achieve a better collective outcome by leaving the FPO
and forming their own smaller coalition, the FPO is considered unstable.

The Core [12, 28] formalizes this notion, defining the set of payoff allocations (x1, ..., xn) such that
no subgroup S ⊂ N can obtain more than

∑
i∈S xi by acting alone (i.e.,

∑
i∈S xi ≥ v(S) for all S),

3



while ensuring the total value v(N) is distributed. A non-empty Core guarantees the existence of at
least one stable allocation. The computational complexity of finding the Core can be high, and it may
be empty in some games. The concept of approximate stability, where deviations are only triggered if
the gain exceeds a certain threshold or proportion, offers a relaxation and guarantees existence more
broadly [11].

Our experimental analysis checks for Core stability for small FPO sizes under different allocation
rules, as the time complexity of exactly computing the Core is exponential in the number of players
[10].

Fair Allocation: The Shapley Value, Assuming an FPO generates a collective benefit v(N), the
question arises of how to distribute this value fairly among its members.

The Shapley value [29] gives a fairness rule based on clear principles such as efficiency, treating
similar players equally, and giving nothing to those who contribute nothing. It assigns each farmer
their expected marginal contribution over all possible orders in which they could join the coalition.
The Shapley value has found applications in diverse cooperative settings, including fairly allocating
costs or profits in supply chains [35, 38] and designing incentives within FPOs [39].

Our study evaluates the Shapley value as a primary candidate for revenue sharing within the agricul-
tural VCM, assessing its fairness (via Gini coefficient) and its ability to satisfy individual rationality
(IR), ensuring farmers are better off joining the FPO than remaining independent.

2.3 Mechanism Design for Carbon Credit Trading

Beyond the internal FPO dynamics, the design of the market where carbon credits are traded is
crucial. Mechanism design [23, 22] provides the tools to engineer market rules that align individual
incentives with desired system outcomes like efficiency and fairness.

Auction Mechanisms: Auctions are common mechanisms for selling goods, including environ-
mental credits [13, 15]. Different auction formats exist, each with distinct properties:

• VCG Auction: The Vickrey-Clarke-Groves mechanism [23] is known for achieving efficient
allocation (maximizing total surplus) and being strategy-proof (truth-telling is optimal)
under certain assumptions (e.g., quasi-linear utilities). It sets payments by looking at how
much each bidder’s presence affects the others. However, VCG can suffer from potential
budget deficits (in general settings, though often not in single-item or simple settings like
ours) and computational complexity. Its performance in carbon markets has been studied
experimentally [4] and analytically [36].
Our simulations implement a VCG auction where farmers bid their costs (implicitly, via
their willingness to supply at a given price) and evaluate its outcomes.

• Other Formats: Uniform-price (where all winners pay the same market-clearing price) and
discriminatory-price auctions are also used [4, 36]. These may be simpler but often lack the
strong incentive properties like VCG.
Our experiments include a basic Uniform Price auction for comparison, primarily focusing
on VCG as a theoretical benchmark for efficiency.

Key Design Considerations: When designing mechanisms for agricultural carbon credits, several
factors are paramount:

• Heterogeneity: Farmers vary greatly in the cost of adopting climate-friendly prac-
tices—such as improving soil health, shifting to low-emission inputs, or planting trees.
These differences are further shaped by variations in farm size, individual attitudes toward
risk, and the level of access they have to technical knowledge and market information [37].
The mechanism must handle this heterogeneity effectively.

• Information Asymmetry: Farmers typically have better information about their costs and
efforts than buyers or regulators. Incentive compatibility is vital to uncover the truthful
information.

• Individual Rationality (Participation Constraint): As the market is voluntary, the mecha-
nism must ensure farmers receive payoffs that meet or exceed their opportunity cost (their

4



payoff from traditional farming or not participating) [21]. This condition is more demanding
than merely compensating for implementation costs and is a key aspect of our evaluation
framework.

• Fairness: Beyond efficiency, the distribution of surplus between farmers, buyers, and
any intermediary (like an FPO or auctioneer) is a key concern for equity and long-term
acceptance [37].

Recent work explores adaptive mechanisms [34] and automated mechanism design [27] to tackle
complex market environments, although direct application to the specific Indian agricultural VCM
requires further study.

2.4 Positioning of this Work

This study integrates these strands of literature to analyze the specific context of the proposed
Indian agricultural VCM. While previous work has examined FPO incentives [39], carbon auction
design [4, 36], and mechanism design for heterogeneous agricultural producers [37] separately, our
contribution lies in:

1. Explicitly modeling FPOs using cooperative game theory within the VCM framework and
evaluating the stability (Core) and fairness (Shapley value) of farmer participation under
varying synergy assumptions (α, β).

2. Directly comparing the outcomes (profitability, fairness, IR vs. standalone payoff) of
this cooperative game-theoretic allocation approach (Shapley) against a standard market
mechanism (VCG auction) using consistent simulations.

3. Providing quantitative evidence on the suitability of different approaches to address the
dual goals of farmer welfare and VCM viability in the Indian smallholder context, thereby
informing the practical implementation of the government’s framework [17].

This work aims to integrate cooperative game theory and mechanism design to analyze the effective-
ness of voluntary carbon markets for smallholder farmers. By linking internal dynamics within FPOs
to external market mechanisms, the study provides a unified framework to assess both fair revenue
sharing and efficient credit pricing—offering insights that support better policy design and farmer
participation.

3 Models and Methods

This section formally defines the game-theoretic and mechanism design models employed to analyze
coalition formation and carbon credit trading within the proposed Indian agricultural Voluntary
Carbon Market (VCM).

3.1 Problem Formulation: The VCM Game

We model the VCM scenario as a game involving multiple agents.

• Players: The primary players are the individual farmers, denoted by the set N =
{1, 2, . . . , n}.

• Actions/Strategies: A farmer i’s fundamental choice is whether to participate in the
VCM, potentially by joining a coalition (FPO), or to continue with standalone farming. If
participating, their actions involve adopting specific sustainable agricultural practices which
help in generate carbon credits.

• Payoffs: The payoff for farmer i, denoted by ui(·), represents their net benefit (e.g., in
INR). This payoff depends on their chosen strategy, the actions of other farmers (especially
within a coalition), and the market outcomes (e.g., carbon credit price, revenue share). For
standalone farming, farmer i receives a baseline payoff ri, derived from their traditional
agricultural activities. We assume ri is known or estimated for each farmer (e.g., from the
‘Standalone_Payoff_INR‘ in our dataset generated from the probability distribution).
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• Information: We generally assume farmers know their own baseline payoff ri and poten-
tially their costs for adopting sustainable practices. Information about others payoffs, costs,
or the true market value of credits may be unknown or private. (In the auction setting, we
assume farmers know their own costs but not those of others.)

3.2 Cooperative Game Model for FPO Coalitions

To analyze the benefits and stability of farmers cooperating through FPOs, we use a cooperative game
framework with transferable utility (TU).
Definition 3.1 (Cooperative Game). A cooperative TU game is defined by a pair (N, v), where
N = {1, . . . , n} is the set of players (farmers) and v : 2N → R is the characteristic function. For
any coalition S ⊆ N , v(S) represents the total payoff (value) that the members of coalition S can
jointly achieve by cooperating, with v(∅) = 0.

Characteristic Function (v(S)). The definition of v(S) is crucial as it encodes the value generated
by cooperation. Based on our experimental setup, we model the value generated by a farmer coalition
S (representing an FPO) as:

v(S) = α
∑
i∈S

ri + β

(∑
i∈S

ri

)2

(1)

where:

• ri ≥ 0 is the standalone payoff (baseline income) of farmer i.
• α ≥ 0 is a parameter scaling the linear contribution of individual baseline payoffs. If α = 1,

the coalition guarantees at least the sum of individual payoffs before considering synergy.
α > 1 could represent inherent efficiency gains even without synergy, while α < 1 might
represent baseline coordination costs.

• β ≥ 0 is a parameter capturing the synergistic effects of scale within the coalition.

This function assumes that the value generated is primarily related to the members’ baseline capabili-
ties (ri) and the potential for synergy (β). It simplifies the complex reality of carbon credit generation
and costs but allows for tractable analysis of cooperation incentives. The game defined by Equation
1 is superadditive if α ≥ 1 and β ≥ 0, meaning v(S ∪ T ) ≥ v(S) + v(T ) for disjoint S, T , which
generally incentivizes the formation of larger coalitions [25].

Stability: The Core, As defined in Section 2, the Core identifies stable payoff allocations. An
allocation x = (x1, . . . , xn) is in the Core of the game (N, v) if

∑
i∈N xi = v(N) and

∑
i∈S xi ≥

v(S) for all S ⊆ N . A non-empty Core is desirable for the long-term viability of the FPO.
Theorem 3.1 (Bondareva-Shapley Theorem [25]). A cooperative TU game (N, v) has a non-empty
Core if and only if it is balanced. A game is balanced if for every balanced collection of coalitions
B (where weights λS > 0 exist for S ∈ B such that

∑
S∈B:i∈S λS = 1 for all i ∈ N ), it holds that∑

S∈B λSv(S) ≤ v(N).

While checking balance directly is complex, games that are convex always have a non-empty Core
[29]. A game is convex if v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ) for all S ⊆ T ⊆ N \ {i}. Our
specific characteristic function (Eq. 1) with β > 0 is generally convex, suggesting the Core should be
non-empty. Algorithm 1 outlines the procedure used in our simulations to check if a given payoff
vector lies within the Core. This involves verifying efficiency and checking the coalition rationality
constraint for all 2n − 2 non-trivial, proper subsets S ⊂ N .

The exponential complexity of iterating through all subsets in Algorithm 1 limits its practi-
cal application to small n (typically n ≤ 15), as reflected in our experimental parameters
(‘CORE_CHECK_THRESHOLD‘).

Fair Allocation: The Shapley Value offers a unique allocation of value among participants,
derived logically from a set of fairness-based axioms. [29].
Theorem 3.2 (Shapley Axioms [29, 22]). The Shapley value ϕ(v) = (ϕ1(v), . . . , ϕn(v)) is the
unique allocation rule satisfying the following three axioms:

6



Algorithm 1 Check if Payoff Vector x is in the Core

Input: Payoff vector x = (x1, . . . , xn), Characteristic function values v(S) for all S ⊆ N , Tolerance
ϵ > 0.

Output: Boolean ‘True‘ if x is in the Core, ‘False‘ otherwise.
1: Compute total allocated payoff Xtotal =

∑
i∈N xi.

2: Compute grand coalition value VN = v(N).
3: if |Xtotal − VN | > ϵ then ▷ Check Efficiency
4: return ‘False‘
5: end if
6: for each coalition S ⊆ N , where S ̸= ∅ and S ̸= N do
7: Compute coalition allocation XS =

∑
i∈S xi.

8: Get coalition value VS = v(S).
9: if XS < VS − ϵ then ▷ Check Coalition Rationality

10: return ‘False‘ ▷ S is a blocking coalition
11: end if
12: end for
13: return ‘True‘ ▷ No blocking coalitions found

1. Symmetry: For any permutation π on the set of players N and any player i ∈ N , we have
ϕπ(i)(v

π) = ϕi(v),

where vπ(S) = v(π−1(S)) is the permuted value function. This axiom implies that only the
role of a player in the game matters, not their labels.

2. Linearity: For any two coalitional games v1, v2 and any scalar p ∈ [0, 1], define v =
pv1 + (1− p)v2 by

v(S) = pv1(S) + (1− p)v2(S), ∀S ⊆ N.

Then, for every player i ∈ N ,
ϕi(v) = pϕi(v1) + (1− p)ϕi(v2).

This axiom ensures that the Shapley value is a linear operator over games.

3. Carrier (or Null Player): Let D ⊆ N be a carrier for the game (N, v), i.e., v(S) = v(S∩D)
for all S ⊆ N . Then:

ϕi(v) = 0 for all i /∈ D, and
∑
i∈D

ϕi(v) = v(N).

This axiom ensures that only players in the carrier set (influential players) receive a non-zero
allocation, and they divide the total surplus among themselves.

Theorem 3.3 (Shapley’s Uniqueness Theorem [29, 22]). With the above three axioms in place, we
can now state the celebrated result due to Shapley:

There exists a unique value mapping ϕ : R2n−1 → Rn that satisfies the above axioms. This mapping
is given by:

ϕi(v) =
∑

S⊆N\{i}

|S|! (n− |S| − 1)!

n!
[v(S ∪ {i})− v(S)] , ∀i ∈ N.

Calculating the Shapley value involves computing the marginal contribution of each player i to every
possible coalition S not containing i, weighted by the probability of that coalition forming just before
i joins in a random permutation of players.

Exact Calculation: For small n (e.g., n ≤ 10 − 12), the Shapley value can be computed exactly
by iterating through all n! permutations of players (Algorithm 2) or by iterating through all 2n−1

coalitions S for each player i using the Shapley formula as per Theorem 3.3.

Approximate Calculation: For larger n, where n! or 2n becomes computationally intractable, the
Shapley value is typically approximated using Monte Carlo sampling (Algorithm 3). This involves
generating a large number (M ) of random permutations and averaging the marginal contributions
observed for each player. The accuracy of the approximation improves with M . Our experiments use
this method for n > 10.
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Algorithm 2 Exact Shapley Value Calculation (Permutation Method)

Input: Set of players N , Characteristic function v.
Output: Shapley value vector ϕ = (ϕ1, . . . , ϕn).

1: Initialize ϕi = 0 for all i ∈ N .
2: Let Π be the set of all n! permutations of N .
3: for each permutation π = (π(1), . . . , π(n)) ∈ Π do
4: for k = 1 to n do
5: Let i = π(k).
6: Let Sk−1 = {π(1), . . . , π(k − 1)} (with S0 = ∅).
7: Compute marginal contribution MCi = v(Sk−1 ∪ {i})− v(Sk−1).
8: ϕi ← ϕi +MCi.
9: end for

10: end for
11: for i = 1 to n do
12: ϕi ← ϕi/n!.
13: end for
14: return ϕ.

Algorithm 3 Approximate Shapley Value Calculation (Monte Carlo)

Input: Set of players N , Characteristic function v, Number of samples M .
Output: Approximate Shapley value vector ϕ̂ = (ϕ̂1, . . . , ϕ̂n).

1: Initialize ϕ̂i = 0 for all i ∈ N .
2: for m = 1 to M do
3: Generate a random permutation π = (π(1), . . . , π(n)) of N .
4: for k = 1 to n do
5: Let i = π(k).
6: Let Sk−1 = {π(1), . . . , π(k − 1)} (with S0 = ∅).
7: Compute marginal contribution MCi = v(Sk−1 ∪ {i})− v(Sk−1).
8: ϕ̂i ← ϕ̂i +MCi.
9: end for

10: end for
11: for i = 1 to n do
12: ϕ̂i ← ϕ̂i/M .
13: end for
14: return ϕ̂.

3.3 Mechanism Design: VCG Auction for Carbon Credits

To model the trading aspect where farmers (or FPOs) sell carbon credits to buyers, we simulate a
VCG auction [33, 3, 8, 23].

Setting:

• Sellers: A set of farmers/FPOs N = {1, . . . , n}, where each seller i offers a quan-
tity qi (Potential_Carbon_Credits_tCO2e) of credits and has a private cost ci per credit
(True_Cost_per_Credit_INR).

• Buyer(s): We simplify to a single representative buyer (or a fixed market demand price)
willing to pay up to pmax per credit. In other simulations, we model a buyer demanding a
total quantity Qdemand.

• Outcome: The mechanism determines which sellers W ⊆ N sell their credits (allocation)
and the payment Pi each winning seller i ∈W receives.

VCG Mechanism Rules: Assuming sellers bid their true cost per credit ci (incentivized by the
mechanism’s properties):
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1. Allocation Rule: Select the set of sellers W ∗ that maximizes the total social surplus, given
the buyer’s maximum price pmax. This means selecting all sellers i such that their cost ci is
less than or equal to pmax.

W ∗ = {i ∈ N | ci ≤ pmax}
The total surplus generated is

∑
i∈W∗ qi(pmax − ci).

2. Payment Rule (Clarke Pivot): Each winning seller i ∈W ∗ receives a payment Pi equal to
the hypothetical value achieved by others if i had not participated, minus the actual value
achieved by others with i’s participation, plus their own cost. In a simple setting with a
price threshold pmax, this often simplifies. Let ccritical be the lowest cost among the sellers
not selected (or pmax if all sellers with ci ≤ pmax are selected). A common implementation
(reflected in our VCG code for a price threshold) sets the payment per credit for winner i to
this critical cost( ccritical ).

Pi = qi × ccritical
where ccritical = min({cj | j /∈W ∗} ∪ {pmax}).
This ensures the payment is at least the winner’s bid (qici) and reflects the opportunity cost
imposed on the market.

Algorithm 4 shows the implementation used in the simulations based on a price threshold.

Algorithm 4 VCG Auction Simulation (Price Threshold)

Input: Set of sellers N , costs ci, quantities qi for each i ∈ N , Buyer’s max price pmax.
Output: Set of winners W ∗, Payments P = {Pi}i∈W∗ , Total Surplus TS.

1: Initialize W ∗ = ∅, P = ∅.
2: Identify potential winners Wpot = {i ∈ N | ci ≤ pmax}.
3: if Wpot = ∅ then
4: return W ∗, P , 0.
5: end if
6: Identify excluded sellers Nexcl = {j ∈ N | cj > pmax}.
7: if Nexcl = ∅ then
8: ccritical ← pmax.
9: else

10: ccritical ← min{cj | j ∈ Nexcl}.
11: end if
12: W ∗ ←Wpot.
13: TotalPayments← 0.
14: TotalTrueCostWinners← 0.
15: for each winner i ∈W ∗ do
16: Pi ← qi × ccritical. ▷ Calculate payment based on critical cost
17: P [i]← Pi.
18: TotalPayments← TotalPayments+ Pi.
19: TotalTrueCostWinners← TotalTrueCostWinners+ qi × ci.
20: end for
21: TotalBuyerV alue← pmax ×

∑
i∈W∗ qi.

22: TS ← TotalBuyerV alue− TotalTrueCostWinners. ▷ Total Surplus
23: return W ∗, P , TS.

Properties of VCG:
Theorem 3.4 (VCG Properties [23, 22]). The VCG mechanism satisfies the following properties:

1. Surplus Maximization (Efficiency): The VCG mechanism selects the allocation that maxi-
mizes the total social surplus.

2. Incentive Compatibility: Bidding truthfully (i.e., bidding ci if ci is the true cost) is a
dominant strategy for each seller.

3. Individual Rationality (IR): Winning bidders always receive a payment Pi that is greater
than or equal to their declared cost valuation qici (assuming truthful bidding).

Pi ≥ qici
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Our analysis specifically contrasts the IR property (vs. cost) of VCG with the IR property (vs.
standalone payoff ri) needed for voluntary participation in the broader VCM scheme, using Shapley
value as the alternative allocation method.

3.4 Utility Functions

To potentially model farmer preferences beyond simple profit maximization, especially regarding
risk, we consider different utility functions ui(x) mapping monetary payoff x to utility.

• Linear Utility: ui(x) = x. This represents risk-neutral behavior.

• Logarithmic Utility: ui(x) = ai log(x) + bi for x > 0. This represents risk-averse
behavior.

While our core analysis focuses on direct monetary payoffs (linear utility implicitly), considering
alternative utility functions can provide insights into how risk aversion might affect coalition sta-
bility or mechanism preferences, although this was explored only briefly in the parameter search
experiments.

3.5 Evaluation Metrics

We assess the performance and characteristics of these mechanisms using the following metrics:

• Individual Rationality (IR): A mechanism satisfies IR if every participating farmer i
receives a payoff pi that is weakly preferred to their standalone option payoff.

• Average Farmer Profit: The mean payoff 1
n

∑n
i=1 pi across all farmers considered (n),

providing a measure of overall farmer welfare generated by the mechanism.
• Fairness (Gini Coefficient): Calculated on the distribution of payoffs {p1, ..., pn}.

A value of 0 indicates perfect equality (all farmers receive the same payoff), while a value
closer to 1 indicates high inequality.

• Buyer Cost: The total amount paid by the buyer to all winning farmers in the VCG and
Uniform Price auctions,

∑
i∈W pi.

• Total Surplus (VCG): Measures the total value created, often defined as
Total Buyer Value− Total True Cost of Winners.
For VCG, assuming truthful reporting and a buyer value of Pmax per credit, this is approxi-
mated by

∑
i∈W (Pmax − ci)qi.

• Stability (Shapley): Assessed by checking if the Shapley value allocation ϕ(v) lies within
the Core of the cooperative game (N, v). Only feasible for small N (N ≤ 15 in our setup).

• Participation Rate: The number or percentage of farmers who are selected as winners in
the auction mechanisms.

4 Experimental Setup and Methodology

To rigorously evaluate the performance of cooperative game-theoretic allocations and market mecha-
nisms within the context of the proposed Indian agricultural Voluntary Carbon Market (VCM), a series
of computational experiments were designed and executed. This section provides a detailed account
of the methodology, including the generation of synthetic farmer data, the specific experimental
scenarios investigated, the parameter configurations explored, the algorithmic implementations, and
the metrics employed for evaluation. The aim is to simulate key aspects of the VCM, particularly
focusing on the challenges and opportunities for smallholder farmer participation through Farmer
Producer Organizations (FPOs).

4.1 Synthetic Data Generation: Simulating Farmer Heterogeneity

Recognizing the challenges in obtaining comprehensive real-world data at this stage, we generated a
synthetic dataset representing a population of Indian farmers. This controlled approach allows for
systematic variation of parameters and evaluation of models under different conditions.
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Problem Setting and Assumptions: The data generation process simulates n farmers, each
characterized by attributes relevant to their potential participation in a VCM and their baseline
agricultural activities. Key assumptions include:

• Farmer heterogeneity is crucial and is modeled across multiple dimensions (farm size, costs,
potential credits, baseline income).

• Farmers possess private information regarding their true costs (ci) of generating carbon
credits and their baseline standalone payoff (ri).

• Farmers make decisions (e.g., whether to join an FPO, how to bid in an auction) based on
maximizing their expected payoff or utility. The primary analysis assumes risk neutrality
(linear utility) .

• The potential quantity of carbon credits (qi) per farmer is generated based on farm character-
istics but is assumed fixed for a given participation decision in the simulation timeframe.

Data Attributes and Distributions: The synthetic dataset was generated using Python scripts
leveraging the numpy.random library, ensuring reproducibility through a fixed seed (RANDOM_SEED
= 24004). For a simulated population of Ntotal = 250 farmers, the following key attributes were
generated for each farmer i:

• Farmer_ID: Unique string identifier (e.g., ‘F00001‘).
• Farm_Size_ha: Landholding size in hectares, sampled from a Gamma distribution

(Γ(shape = 2, scale = 1.5)) to reflect the prevalence of smaller farms.
• Potential_Carbon_Credits_tCO2e (qi): The potential number of credits a farmer can

generate. Sampled from Γ(shape = 2.5, scale = 1.8), clipped below at 0.1 tCO2e to
ensure positivity.

• Standalone_Payoff_INR (ri): The farmer’s baseline annual income from conventional
farming. Sampled from a Normal distribution (N (µ = 20000, σ = 5000)), rounded to the
nearest 100 INR, and clipped below at 5000 INR.

• True_Cost_per_Credit_INR (ci): The farmer’s private marginal cost to generate one
carbon credit. Sampled from Γ(shape = 3, scale = 800), with a base of 500 INR added,
clipped below at 100 INR. This cost represents the additional expenses or effort required for
sustainable practices, normalized by the credits generated.

• Certification_Cost_Individual_INR: A simulated cost if the farmer were to undergo
certification individually, sampled uniformly from [4000, 9000] INR.

• Risk_Aversion_Coeff: A coefficient sampled from a Beta distribution (Beta(2, 3),
scaled and shifted to [0.1, 5.1]) to represent potential variations in risk attitudes, available
for future analysis using non-linear utility functions.

• Other Categorical/Demographic Attributes: Variables like Land_Tenure_Type,
Education_Level, Gender, Debt_Status, Crop_Type, Market_Access,
Previous_Coalition_Experience, and Farm_Location_State were sampled
using numpy.random.choice with probability distributions based on general Indian
agricultural contexts.

This generated dataset, comprising 250 farmer profiles, forms the basis for all subsequent experiments.
For simulations requiring fewer farmers (n < 250), subsets were randomly sampled from this base
dataset.

4.2 Cooperative Game Analysis: FPO Formation and Allocation

To investigate the benefits and internal dynamics of farmers collaborating within FPOs, we modeled
the situation as a cooperative TU game (N, v) as defined in Section 3.

Characteristic Function Implementation: The value v(S) for a coalition S was calculated
using Equation 1: v(S) = α

∑
i∈S ri + β(

∑
i∈S ri)

2. The implementation involved retrieving the
Standalone_Payoff_INR (ri) for each farmer i ∈ S from the dataset and applying the formula
based on the specified α and β parameters for that simulation run. This function captures both the
baseline contribution scaled by α and the synergy effect scaled by β.
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Shapley Value Computation: The Shapley value ϕi(v) for each farmer i ∈ N was computed to
determine a fair allocation of the grand coalition’s value v(N).

• Exact Method: For simulations with a small number of farmers (n ≤ 10), the exact Shapley
value was computed using the permutation-based approach outlined in Algorithm 2. This
involves iterating through all n! permutations, calculating marginal contributions for each
player in each permutation, and averaging.

• Monte Carlo Approximation: For larger n (n > 10), exact computation becomes infeasible.
We employed Monte Carlo sampling as described in Algorithm 3. A substantial number
of random permutations (M , typically set to 10,000) were generated, and the expected
marginal contribution for each player was estimated by averaging over these samples.

The computed Shapley values {ϕi}i∈N represent the payoff allocated to each farmer under this
fairness principle.

Core Stability Analysis: To assess whether the Shapley value allocation leads to stable FPOs,
we checked if the allocation vector x belonged to the Core. Due to the computational complexity
(O(2n × n)), the Core check (Algorithm 1) was performed only for simulations with n ≤ 15.

Experiments Conducted: Specific experiments focused on

1. Individual vs. Grand Coalition (N=12): Compared the Shapley value payoff ϕi for each
farmer in the grand coalition (N = 12) against their standalone payoff ri. Calculated
average gain and percentage better off.

2. Coalition Size Effect (N=3, 5, 8, 12): For various coalition sizes, sampled multiple
coalitions randomly, calculated the average value per farmer (v(S)/|S|) and the average
Shapley value within the coalition. Examined trends with increasing size.

3. Allocation Rule Stability (N=12): Checked if Shapley, Equal Split (xi = v(N)/n), and
Proportional Split (xi = (ri/

∑
rj)× v(N)) allocations were Core-stable.

4. Parameter Sensitivity (N=100): Varied α and β systematically and computed the resulting
average Shapley payoffs and assessed Individual Rationality (xi ≥ ri).

4.3 Mechanism Design Analysis: Auction Simulations

To evaluate market mechanisms for trading carbon credits generated by potentially heterogeneous
farmers, we simulated auction scenarios.

A. VCG Auction Implementation: The VCG mechanism was implemented based on the theoretical
description in Section 3 and Algorithm 4.

• Input: Set of participating farmers N , their true costs per credit ci, potential credit quantities
qi, and a market clearing condition, typically modeled as a maximum price pmax the buyer
is willing to pay per credit.

• Assumption: Farmers bid truthfully (i.e., bid their true cost ci), consistent with the strategy-
proof property of VCG.

• Allocation: Winners (W ∗) are determined as all farmers i for whom ci ≤ pmax.
• Payment Calculation: The critical cost ccritical is determined as the minimum cost among

losing bidders (j /∈W ∗) or pmax if all bidders with ci ≤ pmax win. Each winner i ∈W ∗

receives a payment Pi = qi × ccritical.
• Surplus Calculation: Total social surplus is calculated as

∑
i∈W∗ qi(pmax − ci).

B. Uniform Price Auction Implementation: A simple ascending-price auction was simulated for
comparison, as

• Input: Sellers N , costs ci, quantities qi, and a total buyer demand quantity Qdemand.
• Output: The set of winners W ∗, the clearing price pclear, and the payments Pi for each

winner.
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Experiments Conducted:

1. Supply Curve Generation (N=250): Ran the VCG auction simulation across a range of
‘vcg_price_per_credit‘ values (500 to 4000 INR). Recorded the total credits supplied (

∑
qi

for winners) at each price point.
2. VCG Outcome Analysis (N=250): For the same price range as above, calculated and

tracked key VCG metrics: number of winners, total surplus, total payments, Gini coefficient
of payments among winners, IR status (vs. cost ci), and budget balance.

3. Mechanism Comparison (N=12 to 250): Compared VCG and Uniform Price auctions
against the Shapley allocation (from the cooperative game model, using α = 1.0, β = 0.0 for
a baseline comparison) across a varying ‘market_price_per_credit‘. Focused on comparing
average farmer profit, Gini coefficient, and IR percentage (vs. standalone payoff ri).

4.4 Evaluation Metrics Implementation

The metrics defined in Section 3.5 were implemented computationally:

• Gini Coefficient: Calculated using the standard formula involving the sum of absolute
differences between all pairs of payoffs, normalized by the total payoff and number of
players.

• Individual Rationality: Implemented as direct comparisons using a small tolerance ϵ for
floating-point precision. For cooperative settings, xi ≥ ri − ϵ. For VCG, Pi ≥ (qici)− ϵ

for i ∈W ∗. Percentage IR was calculated as number of farmers meeting IR
total number of relevant farmers ∗ 100.

• Core Check and VCG : Implemented as per Algorithm 1 and Calculated directly from the
outputs of the VCG simulation (Algorithm 4) respectively.

These metrics allowed for a quantitative comparison of the different scenarios, parameters, and
mechanisms explored in the study. The codebase includes functions dedicated to these calculations.
The complete codebase for the experiments and simulations is available on GitHub at the following
link: https: // github. com/ Mahanth-Maha/ GameTheory2025MiniProject .

5 Results and Discussion

This section presents the findings from the computational experiments detailed in Section 4. We
analyze the results concerning coalition formation, stability, market mechanism performance, and
parameter sensitivity, interpreting their implications for the design of a Voluntary Carbon Market
(VCM) in the Indian agricultural sector.

5.1 Benefits and Stability of FPO Coalitions

A primary objective was to assess the potential benefits of farmers forming coalitions (FPOs) and the
stability of different methods for allocating the generated value, using the cooperative game model
defined in Section 4.2.

Value Generation and Economies of Scale: Simulations with varying coalition sizes (N ∈
{3, 5, 8, 12}) were conducted using baseline parameters (α = 1.0, β = 0.01) to investigate the effect
of aggregation. Figure 1 displays the average value per farmer (v(S)/|S|) and the average Shapley
value per farmer within the coalition as a function of coalition size |S|.
As clearly shown in Figure 1 (Left), the average value generated per farmer increases substantially
with the size of the coalition. This trend is mirrored in the average Shapley value allocated per farmer
(Figure 1, Right). This result strongly supports the hypothesis that aggregation through FPOs can
yield significant benefits.

Furthermore, comparing the Shapley value payoff (ϕi) with the standalone payoff (ri) for a specific
coalition of N=12, we found that all farmers (100%) received a significantly higher payoff through
the coalition under these parameters (α = 1.0, β = 0.01). The average gain per farmer (ϕi − ri) was
substantial, indicating a strong economic incentive to join the FPO, and the value is distributed fairly
(as approximated by Shapley).
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Figure 1: Analysis of coalition value and Shapley value distribution as a function of coalition size
(N=3, 5, 8, 12). Left: Average value per farmer (v(S)/|S|). Right: Average Shapley value per
farmer (ϕi(v)). Error bars indicate standard deviation across simulation runs with different sampled
coalitions.

Core Stability of Allocations: For the N=12 simulation, we investigated the stability of different
allocation rules by checking if they reside within the Core (Algorithm 1). The results, summarized in
Table 1, indicate that under the baseline parameters (α = 1.0, β = 0.0), all tested allocation rules
were found to be Core-stable.

Table 1: Core Stability Analysis for N=12 Simulation (Baseline Parameters)
Allocation Rule Is in Core? Gini Coefficient

Shapley Value True ≈ 0.1195
Equal Split True 0.0000
Proportional (Standalone) True ≈ 0.1205

Note: Results extracted from simulation logs for N=12, α = 1.25, β = 0.0. Gini coefficients provide
a measure of fairness.

This finding is significant: it suggests that for smaller FPOs and under conditions where cooperation
is beneficial (β > 0), mechanisms like the Shapley value not only provide fair distribution (low Gini,
comparable to proportional split based on baseline ri) but also lead to stable outcomes where no
subgroup has an incentive to deviate. The Equal Split method, while perfectly egalitarian (Gini=0),
was also stable in this instance but might be less reflective of differing contributions in practice.
The Core stability check was computationally infeasible for larger N (e.g., N=100, N=250) in our
experiments, highlighting a limitation for verifying stability in larger, more realistic FPO settings
without using approximation techniques or focusing on specific coalition structures.

5.2 Impact of Farmer Heterogeneity on Coalition Benefits

Real-world FPOs often consist of members with diverse characteristics, notably varying farm sizes
and baseline incomes (ri). A concern might be whether larger, potentially more influential farmers
capture a disproportionate share of coalition benefits, leaving small farmers with little incentive
to join. To investigate this, we conducted specific simulations including distinct groups of ’Small’
(lower ri, lower qi) and ’Large’ (higher ri, higher qi) farmers within the same coalition (N=15: 10
Small, 5 Large). We analyzed the Shapley value allocation under different parameter settings (α, β).

Scenario 1: No Synergy, No Scaling (α = 1.0, β = 0.0). As theoretically expected, when no
additional value is generated beyond the sum of standalone payoffs, the Shapley value returns exactly
the standalone payoff to each farmer (ϕi = ri). In this case, neither small nor large farmers have a
strict economic incentive to join, although they are not made worse off.
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Scenario 2: Baseline Scaling, No Synergy (α = 1.25, β = 0.0). In the absence of synergy but
with a positive scaling factor (α > 1), all farmers received a Shapley value exactly 25% higher than
their standalone payoff (ϕi = 1.25 × ri). Figure 2 illustrates the average absolute and percentage
gains.

Figure 2: Average Absolute and Percentage Gains by Farmer Type (N=15, α = 1.25, β = 0.0).
Shows Shapley Gain over Standalone Payoff.

Figure 2 clearly shows that while large farmers gain more in absolute INR terms, the percentage gain
is identical (25%) for both groups. This demonstrates that the baseline scaling factor α acts uniformly
relative to initial payoffs under the Shapley allocation in this model. Again, this provides a clear,
equitable (in percentage terms) incentive for both small and large farmers to participate.

5.3 Performance of Market Mechanisms

We analyzed the performance of the VCG auction mechanism for trading carbon credits and compared
it against the Shapley allocation and a simple Uniform Price auction.

VCG Auction Dynamics: Simulations using N=250 farmers and varying the buyer’s maximum
willingness-to-pay (market_price_per_credit) allowed us to trace market dynamics under the
VCG mechanism (Algorithm 4 ). Figure 3 shows the resulting VCM supply curve.

Figure 3: Simulated Voluntary Carbon Market (VCM) Supply Curve using VCG Auction (N=250).
Shows total credits supplied vs. market price per credit.

The supply curve exhibits the expected upward slope, as the price offered per credit increases, more
farmers find it profitable to participate (i.e., their true cost ci is below the price), leading to a greater
aggregate supply of credits.

15



Figure 4 provides a more detailed view of VCG outcomes as a function of price.

Figure 4: VCG Auction Outcomes vs. Price per Credit (N=250). Top: Number of winning farmers
and total social surplus. Middle: Gini coefficient of payments among winners. Bottom: VCG budget
balance (Total Payments - Total Buyer Value at pmax).

Key observations from Figure 4:

• Efficiency and Participation: Both the number of winning farmers and the total social
surplus increase steadily with the market price (Top panel), demonstrating the efficiency
property of VCG in maximizing value capture as prices rise.

• Payment Fairness (Winners): The Gini coefficient among winning farmers (Middle panel)
fluctuates but remains in a moderate range (mostly 0.25-0.32)suggesting that VCG itself
doesn’t induce extreme

• Budget Balance: The VCG mechanism consistently generates a budget surplus for the
"auctioneer" or market platform (Bottom panel), as total payments (based on critical
costs) are generally less than the total value perceived by the buyer at the maximum price
(pmax). This surplus increases with price, representing value not captured by participating
farmers or the buyer directly. This could potentially fund the platform but might be perceived
as extracting value.
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• IR vs. Cost: Simulations confirmed that the VCG mechanism always satisfied Individual
Rationality with respect to the farmer’strue cost ci for all winners (i.e., Pi ≥ qici), as
expected theoretically.

Mechanism Comparison–Profitability, Fairness, and Participation A crucial set of experiments
compared Shapley Allocation (representing cooperative distribution within an FPO), VCG Auction,
and Uniform Price Auction across a range of market prices. The results are presented in the Figures
5, 6, and 7.

Figure 5: Average Farmer Profit vs. Market Price per Credit for Different Mechanisms (N=250,
α = 1.0, β = 0.0).

Figure 6: Individual Rationality Met (%) vs. Market Price per Credit (N=250, α = 1.0, β = 0.0). IR
is checked against the farmer’s standalone payoff ri.

The comparison of mechanisms reveals several important insights

• Profitability (Fig. 5): Shapley Allocation (with α = 1.0, β = 0.0) yields a constant average
profit equal to the average standalone payoff ri, as expected when there’s no synergy. VCG
profit increases with price but remains significantly lower than Shapley in this baseline case.
Uniform Price yields negligible average profit. When synergy is introduced (β > 0, see
sensitivity analysis below in the next sub section 5.4 ), Shapley profit dramatically increases.
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Figure 7: Fairness (Gini Coefficient) vs. Market Price per Credit (N=250, α = 1.0, β = 0.0).

• Individual Rationality vs. Standalone Payoff (Fig. 6): This is the most critical result for a
voluntary market. Shapley Allocation (with α = 1.0, β = 0.0) achieves 100% IR, meaning
no farmer is worse off than their baseline ri. In stark contrast, VCG shows very poor IR
performance, only exceeding 10% at the highest prices. Uniform Price shows 0% IR. This
suggests that without modification or significant synergy capture, auction mechanisms like
VCG may fail to incentivize broad voluntary participation if farmers compare the outcome
to simply continuing their traditional farming.

• Fairness (Fig. 7): Shapley Allocation demonstrates excellent fairness with a low and stable
Gini coefficient (≈ 0.14). VCG fairness among participants varies significantly with price
but is generally much worse (higher Gini). Uniform Price Auction shows near-perfect
inequality (Gini ≈ 1) because only a few low-cost farmers win and get paid the (low)
clearing price, while most get zero.

These results strongly favor the Shapley value approach from a farmer participation and equity
perspective, especially when compared against baseline farming activities (ri).

5.4 Parameter Sensitivity–Impact of α and β

Given the importance of the characteristic function parameters, we analyzed their impact on Shapley
payoffs for N=100 farmers.

Impact of α (Baseline Scaling, β = 0). Simulations systematically varying α from 0.75 to 1.50
(while β = 0) showed a direct linear relationship between α and the average Shapley payoff ϕi.

• When α < 1.0 (e.g., α = 0.75), ϕi < ri for all farmers. This resulted in 0% IR satisfaction,
indicating that scaling down baseline contributions makes cooperation unattractive.

• When α = 1.0, ϕi = ri for all farmers (Gain=0). This satisfies IR exactly but offers no
strict incentive over standalone farming.

• When α > 1.0 (e.g., α = 1.05, 1.10, . . . , 1.50), ϕi > ri for all farmers, satisfying IR and
providing a positive gain that increases linearly with α.

This highlights that ensuring α ≥ 1.0 is crucial if there are no additional synergy benefits (β = 0).

5.5 Discussion of Results and Implications

The experimental findings provide several key insights relevant to designing and implementing the
proposed VCM for Indian agriculture:
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Figure 8: Shapley Gini Coefficient vs. α, faceted by β (N=12).

1. Value of Aggregation (FPOs): The simulations strongly support the government’s emphasis
on farmer aggregation [17]. Collective action through FPOs demonstrably increases the
potential value generated per farmer (Figure 1).

2. Shapley Value as a Strong Allocation Candidate: The Shapley value emerges as a
compelling mechanism for distributing collective VCM revenue within FPOs.

• It offers demonstrably fair outcomes (low Gini, Figures 7, 8, Table 1).
• Crucially, under reasonable parameter assumptions (α ≥ 1 or β ≥ 0), it satisfies

Individual Rationality compared to standalone farming (Figure 6, sensitivity analysis),
which is paramount for ensuring voluntary participation.

• For smaller coalitions (N=12), it resulted in Core-stable allocations (Table 1), suggest-
ing it can foster stable cooperation.

3. Limitations of Standard Auction Mechanisms (for IR): While VCG auctions are efficient
at maximizing social surplus (Figure 4) and incentivize truthful cost revelation, they perform
poorly when farmer participation depends on exceeding their standalone farming payoff
ri, rather than just covering their abatement cost ci. The low IR percentages observed for
VCG and Uniform Price auctions (Figure 6) suggest they might not be suitable as the sole
mechanism driving participation in a purely voluntary setting without further incentives or
modifications.

4. Need for Integrated Approach: The findings suggest an integrated approach is needed.
FPOs are vital for aggregation and potentially realizing synergies (modeled via cooperative
game theory). The mechanism for distributing benefits within the FPO (e.g., Shapley) must
ensure fairness and meet participation constraints. The mechanism for selling credits to
the market (e.g., auctions) needs to be designed considering its impact back on farmer
incentives and overall surplus distribution. Perhaps hybrid mechanisms combining auction
price discovery with cooperative surplus distribution warrant further investigation.

5. Limitations and Future Directions: The reliance on synthetic data, the specific functional
form chosen for v(S), and the computational limits on Core analysis represent limitations.
Future work should involve calibration with real-world FPO data, exploring alternative char-
acteristic functions (e.g., incorporating costs explicitly), investigating Core approximations
for larger N, and designing/analyzing novel hybrid market mechanisms.

In summary, the experiments confirm the potential of FPO-based VCMs but highlights the critical
importance of mechanism design choices, particularly regarding revenue allocation, for ensuring
farmer participation, fairness, and stability. The Shapley value demonstrates strong potential, while
standard auctions like VCG require careful consideration regarding their suitability for incentivising
voluntary smallholder engagement.

6 Conclusion and Future Work

India’s initiative to establish a Voluntary Carbon Market (VCM) for its agriculture sector holds signif-
icant potential for promoting sustainable practices, enhancing farmer livelihoods, and contributing
to national climate goals [17]. However, the success of this initiative, particularly in engaging the
vast majority of small and marginal farmers, depends critically on addressing inherent challenges
related to transaction costs, fair value distribution, and participation incentives. This paper employed
cooperative game theory and mechanism design principles to analyze these challenges and evaluate
potential solutions.
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Our analysis, supported by computational simulations, yields several key conclusions (NOTE : These
results are purely based on the Synthetic Data experiments, which may not align with the actual
real-world data, hence treat these results as indicative rather than conclusive).

1. Essential Role of FPOs: Farmer aggregation through mechanisms like Farmer Producer
Organizations (FPOs) is not merely beneficial but likely essential for VCM viability for
smallholders. Significant potential for value creation exists through coalition formation,
particularly when synergistic effects or economies of scale are realized (Section 5, Figure 1).

2. Shapley Value for Fair Allocation: The selection of an appropriate mechanism to allocate
the collective value generated within FPOs is critical. The Shapley value consistently
emerged as a strong candidate, providing:

• Equitable distributions (low Gini coefficient).
• Satisfaction of individual rationality (IR) compared to baseline standalone farming

payoffs under assumed conditions (Section 5, Figures 6, 7).

This alignment with farmer participation constraints is vital for a voluntary market.

3. Challenges with Auction Mechanisms: While standard auction mechanisms like VCG
offer efficiency properties in theory and practice (Section 5, Figure 4), simulations highlight:

• Potential shortcomings in guaranteeing participation incentives relative to farmers’
existing agricultural options.

• The need for complementary mechanisms or modifications in this specific context.

4. Sensitivity to Cooperation Benefits: Outcomes are highly sensitive to how the benefits of
cooperation (parameters α and β in our model) are estimated and realized, emphasizing the
need for careful, empirically grounded modeling.

Practically, this research underscores the utility of game theory and mechanism design as indis-
pensable tools for VCM design. They provide a structured framework to move beyond high-level
policy goals [17] towards implementable rules and structures. Analyzing FPOs as cooperative games
allows for predicting stability (using the Core, Section 4.2) and designing fair internal allocation
rules (like Shapley). Applying mechanism design helps evaluate external market interactions (like
auctions, Section 4.3) based on incentive compatibility, efficiency, and participation constraints. The
quantitative comparisons offered here provide evidence-based insights for policymakers and FPO
managers navigating these complex design choices.

Future Work : This study opens several avenues for future research, few of which are

1. Empirical Validation: Calibrating the characteristic function (v(S)) and farmer cost/payoff
parameters using real-world data from Indian FPOs and agricultural settings is a critical
next step to enhance model realism.

2. Aggregator as a Strategic Player: A promising direction involves modeling the FPO or
a third-party aggregator not just as a facilitator but as a strategic player in the game. This
requires defining the aggregator’s objectives (e.g., maximizing member welfare, maximizing
own profit, ensuring stability) and analyzing its optimal strategies for recruiting members,
managing resources, and interacting with the carbon market. An improved coalition value
function, potentially incorporating aggregator costs and value-add, could be developed, as
partially outlined in the Appendix (Section A).

Addressing these questions will further refine our understanding and contribute to the successful
implementation of an effective Voluntary Carbon Market benefitting India’s farmers and environment.
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Use of AI :

In the process of preparing this document, the authors have utilized various AI language models
and assistants, such as GPT (ChatGPT) and BERT (Gemini), to enhance the writing quality, provide
summaries of source materials and codes, and gain additional insights. However, the authors diligently
verified all information provided by these AI tools to ensure accuracy and factual integrity.

Furthermore, specific assistance was leveraged from by Large Language Models (LLMs) during the
data generation phase. LLMs were used to explore and select statistical distributions (such as Gamma,
Normal, Beta) and their parameter ranges for generating the synthetic farmer dataset described in
Section 4.1. This facilitated the creation of a heterogeneous dataset representing key farmer attributes
relevant to the Voluntary Carbon Market context especially for the Indian agriculture sector.
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A Analysis of an Aggregator-Mediated VCM Model

The main analysis in this report models Farmer Producer Organizations (FPOs) as cooperative
coalitions where the total generated revenue is distributed among farmers. While in reality the FPOs
or third-party aggregators often act as intermediaries with their own costs and potential profit
motives. This appendix presents an extension by explicitly modeling such an aggregator, analyzing
its impact on farmer payoffs, participation incentives, and overall market dynamics.

A.1 Model Setting

We extend the cooperative game framework (N, v) to include a central aggregator entity A.
Definition A.1 (Aggregator included Game setting). The components of the aggregator included
model are

• Farmers: N = {1, 2, . . . , n}, each with baseline standalone payoff ri.

• Aggregator: A, supporting coalition S ⊆ N .

• Gross Value (V (S)): The underlying value generated by coalition S before considering
aggregator costs or share, modeled as:

V (S) = α
∑
i∈S

ri + β

(∑
i∈S

ri

)2

where α, β ≥ 0 are base potential parameters (same as previous).

• Aggregator Base-Pay Cost Function (CA(S)): Costs incurred by A for managing S , which
may depend on the number of farmers in S and other factors. A simple linear model which
considers the coalition size |S| can be

CA(S) = Cbase + Cvar × |S|
with Cbase ≥ 0 (base pay/fixed overhead), Cvar ≥ 0 (variable cost per farmer), and
(for S ̸= ∅, CA(∅) = 0).

• Net Available Value (Vnet(S)): Value remaining after costs incurred by the aggregator

Vnet(S) = max(0, V (S)− CA(S))

• Aggregator Commission Rate (δ): The fraction δ ∈ [0, 1) of the net available value that
the aggregator retains as profit. This is a strategic decision can motivate the aggregator’s
behavior to maximize its own utility by maximizing the net value.

• Aggregator Profit (πA(S)): The aggregator’s retained share

πA(S) = δ × Vnet(S)
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• Net Value for Farmers (VF (S)): The value remaining for distribution among farmers in S

VF (S) = Vnet(S)− πA(S) = (1− δ)Vnet(S) (2)

This VF serves as the new characteristic function for the farmers cooperative subgame with
aggregator as mediator.

• Farmer Payoff Allocation (xi): Assumed to be determined by the Shapley value applied to
the farmers cooperative game (N, vF ),

xi = ϕi(vF )

• Aggregator Profit: The aggregator’s profit for the grand coalition N is given by

πA(N) = CA(N) + δ × Vnet(N)

• Farmer IR Constraint: Farmer i participates if xi ≥ ri.

This formulation captures the aggregator’s role as a strategic player, influencing the net value available
to farmers and their incentives to participate in the coalition. This motivates the aggregator to set
its commission rate δ and manage its costs CA(S) effectively to maximize its profit while ensuring
sufficient net value remains for farmers to incentivize their participation.

A.2 Experimental Methodology

We simulated the aggregator’s impact using the synthetic dataset (Ntotal = 250, generation described
in Section 4.1) with varing the aggregator’s commission rate δ.

Experimental Parameter Settings :

• Farmer Population (N ): Experiments run for N = 15 (allowing Core checks) and N = 250
(larger scale, hence No Core checks).

• Base Potential: Fixed at α = 1.25 and β = 0.0 for clarity, isolating the effect of costs and
commission on a simple linear potential gain (25% gross boost over baseline).

• Aggregator Costs: Set to Cbase = 10000 INR and Cvar = 300 INR/farmer.

• Commission Rate (δ): Varied from 0.0 (0%) to 0.5 (50%) in steps of 0.05.

• Shapley Calculation: Exact method for N ≤ 15, Monte Carlo for N > 15.

• Core Check: Performed for N = 15 only, using the net farmer value function VF (S).

Procedure: For each value of δ:

1. Define the specific net farmer value function VF (S) based on Equation 2 using the current δ
and fixed cost/potential parameters.

2. Compute the Shapley value allocation x = (ϕ1(vF ), . . . , ϕn(vF )) using the appropriate
algorithm (Exact or MC).

3. Calculate the aggregator’s profit πA(N) for the grand coalition.

4. Evaluate metrics:

• Average farmer payoff.
• Average absolute and percentage gain (xi − ri).
• IR Met Percentage (xi ≥ ri).
• Gini coefficient of x.
• Core stability status (for N = 15).

The full implementation details are available in the project’s codebase2.
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Figure 9: Impact of Aggregator Commission (δ) for N=15.(Base parameters: α = 1.25, β =
0.0, Cbase = 10000, Cvar = 300)

A.3 Results and Discussion

The simulations reveal a clear trade-off between the aggregator’s commission rate (δ) and farmer
participation. Figures 9 and 10 plot the key metrics against δ for both N = 15 and N = 250
scenarios.

Key Observations:

• Farmer Payoffs vs. Commission: As δ increases, the average farmer payoff decreases
linearly. This is expected as the aggregator retains a larger fraction of the net available value.

• Participation Threshold: For both N = 15 and N = 250, the percentage of farmers
meeting the IR constraint (xi ≥ ri) drops from 100% to 0% when δ increases from 0.15 to

2Code available at: https://github.com/Mahanth-Maha/GameTheory2025MiniProject

25

https://github.com/Mahanth-Maha/GameTheory2025MiniProject


Figure 10: Impact of Aggregator Commission (δ) for N=250. (Base parameters: α = 1.25, β =
0.0, Cbase = 10000, Cvar = 300)

0.20. This implies that if the aggregator takes 20% or more commission after covering its
operational costs, the remaining value distributed via Shapley is insufficient to incentivize
voluntary participation compared to standalone farming, under these specific cost and
potential parameters (α0 = 1.25, β0 = 0.0).

• Aggregator Profit: The aggregator’s total profit πA(N) increases linearly with δ, reaching
its maximum when farmer participation might already be None.

• Fairness (Gini): The Gini coefficient of the farmer payoffs xi remains consistently low and
stable (≈ 0.126 for N=15, ≈ 0.142 for N=250) regardless of the commission rate δ.

• Core Stability (N=15): The Shapley allocation remained Core-stable (with respect to the
net farmer value function vF ) across the entire range of δ. This means that even when the
allocation fails the crucial participation IR constraint (xi ≥ ri), no subgroup of farmers
could guarantee doing better by splitting off and only considering the value vF (S) generated
via the aggregator for their subgroup.
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A.4 Conclusion of Appendix

This extension explicitly modeling the aggregator provides valuable insights. It demonstrates that
aggregator operational costs and commission strategies directly impact the net value available to
farmers and, consequently, their incentive to participate in the VCM. A critical threshold exists for
the commission rate, beyond which voluntary participation collapses, even if the internal allocation
(like Shapley) is fair and theoretically stable.

The stability of the Shapley allocation within the Core (for small N) even at high commission rates,
while is practically less relevant if the payoffs fail the initial participation constraint. This shows
that VCM design must carefully balance the need for aggregator viability (covering costs CA(S)
and potentially earning a profit πA(S)) with the necessity of providing sufficient net revenue back to
farmers (xi = ϕi(vF ) ≥ ri) to ensure their voluntary engagement.

Future work could explore optimal commission structures (δ) or alternative aggregator models (e.g.,
non-profit FPOs minimizing δ vs. for-profit aggregators) and their impact on overall VCM success
[32, 30]. The computational aspects of finding optimal aggregator strategies or analyzing these more
complex multi-level games also present interesting challenges [5].
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