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Abstract

The “right to be forgotten” presents a significant challenge for deep learning models,
where removing the influence of specific data typically requires costly retraining
from scratch. This paper addresses the problem of targeted class unlearning in
a practical yet challenging zero-shot setting, where the original training data is
entirely unavailable. We introduce a novel and scalable framework that leverages
data-free class impressions synthetic data proxies that capture the essence of a
class to guide a differential unlearning process. Our method employs a unique
optimization strategy that simultaneously performs gradient ascent on a forget loss
to suppress target class features and gradient descent on a retain loss to preserve
knowledge of remaining classes. This is achieved by modifying only the tail-end
of a network, ensuring efficiency and stability. We demonstrate the remarkable
effectiveness of our approach across a range of models and datasets, including
LeNet5 on MNIST, KarpathyNet on CIFAR-10, and scaling up to AlexNet and
ResNet50 on ImageNet. Our experiments show near-perfect forgetting ( 0%
accuracy on target classes) while consistently maintaining or even improving
performance on retained classes, proving our method is not only effective but also
highly selective and scalable.

1 Introduction

The proliferation of large-scale deep neural networks (DNNs) has revolutionized fields from computer
vision to natural language processing. However, their power is derived from vast datasets, which often
contain sensitive, private, or copyrighted information. With the enactment of data privacy regulations
like the GDPR in Europe and the Digital Personal Data Protection Act (DPDPA) in India, the “right
to be forgotten” is no longer a theoretical concept but a legal imperative [Guo et al., 2020]. When a
user or entity requests their data to be removed, all models trained on that data must verifiably erase
its influence.

The naive solution, retraining the model from scratch on the amended dataset, is computationally
prohibitive, especially for foundation models that can take weeks or months to train. This has given
rise to the field of Machine Unlearning, which seeks to efficiently remove data’s influence from a
trained model without a full retrain [Cao and Yang, 2015].

The most challenging and practical variant of this problem is Zero-Shot Unlearning, where the
unlearning algorithm has no access to any of the original training data. This scenario is common in
real-world applications where data retention policies or privacy concerns prevent storing the original
dataset. Existing zero-shot methods often rely on complex synthetic data generation or heuristics that
may not scale to deeper, more complex architectures.

In this work, we propose a novel, highly effective, and scalable framework for zero-shot class
unlearning. Our key contributions are:
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• Data-Free Proxies via Class Impressions: Inspired by the Ask, Acquire, and Attack
framework [Mopuri et al., 2018], we generate data-free proxies, or class impressions, that
maximally activate a specific class’s output neuron. These impressions serve as stand-ins
for the unavailable training data.

• Differential Unlearning via Tail-Model Modification: We introduce a differential loss
function that uniquely combines gradient ascent on forget-class impressions with gradient
descent on retain-class impressions. This optimization is strategically applied only to the
latter layers (the tail) of the model, preserving foundational knowledge while efficiently
targeting high-level class representations for removal.

• Demonstrated Scalability and Selectivity: We validate our approach on a diverse set
of tasks: LeNet5 on MNIST, a custom CNN (KarpathyNet) on CIFAR-10, and critically,
we demonstrate scalability to large-scale vision models like AlexNet and ResNet50 on
ImageNet. Our results consistently show near-zero accuracy on forgotten classes while not
only preserving but often improving accuracy on retained classes.

Our framework provides a practical and powerful solution for targeted information removal, making
deep learning models more compliant, secure, and adaptable in a privacy-conscious world.

2 Related Work

Machine unlearning research has explored various paradigms, primarily distinguished by their data
requirements.

Retraining (Golden Standard). The most straightforward method is to remove the target data
from the training set and retrain the model from scratch. This produces a Golden Standard Model
(GSM) and serves as the theoretical ideal for any unlearning algorithm. However, its computational
cost makes it impractical for most real-world scenarios.

Approximate Unlearning. Many methods aim to approximate the GSM’s parameters efficiently.
Fisher Forgetting [Golatkar et al., 2020] injects calibrated noise based on the Fisher Information
Matrix to erase specific memories, but it can be computationally intensive to compute the FIM for
large models. Other works like [Guo et al., 2020] propose certified data removal by structuring
training into summations, allowing for efficient updates when data is removed. NegGrad+ [Kodge
et al., 2023] applies gradient ascent on forget samples and descent on retain samples, but their
approach assumes access to, or proxies for, the original data.

Zero-Shot Unlearning. This is the most challenging setting. The seminal work by Chundawat et al.
[2023] introduced methods that rely on generating synthetic data to guide the unlearning process,
showing promising results on smaller models. Our work falls into this category but differs in its proxy
generation and optimization strategy. Instead of generating realistic samples, we focus on creating
class impressions that are maximally discriminative for the model.

Data-Free Proxy Generation. Our method for generating data proxies is inspired by Mopuri et al.
[2018], who proposed the Ask, Acquire, and Attack framework to generate Universal Adversarial
Perturbations (UAPs) in a data-free manner. They generate class impressions by optimizing an input
to maximize a class-specific logit. While their goal was to find model vulnerabilities, we repurpose
this powerful technique to create effective data proxies that represent the core features a model has
learned for each class. This allows us to remind the model what to forget and what to retain, all
without a single real data sample.

3 Problem Formulation

Let fθ : X → Y be a deep neural network parameterized by θ, trained on a dataset D = {(xi, yi)}Ni=1.
The dataset is partitioned into a set to be retained, Dr, and a set to be forgotten, Df , such that
D = Dr ∪Df and Dr ∩Df = ∅.
In class unlearning, the forget set Df consists of all samples belonging to a specific set of target
classes, Cf . Consequently, the retain set Dr contains all samples from the remaining classes, Cr.
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The objective of machine unlearning is to produce an unlearned model with parameters θ′, denoted
fθ′ , which approximates the behavior of a Golden Standard Model (GSM) retrained from scratch
only on Dr. Let A(Dr) be the retraining algorithm; the goal is to find an unlearning algorithm U
such that:

fθ′ = U(fθ, Cf ) ≈ fA(Dr). (1)

In the zero-shot setting, the unlearning algorithm U has no access to the dataset D, including both
Dr and Df . The only inputs are the trained model fθ and the set of class indices to forget, Cf .

We formulate this as an optimization problem. The goal is to find new parameters θ′ that minimize
the loss on the (inaccessible) retain set distribution while simultaneously maximizing the loss on the
(inaccessible) forget set distribution. This can be expressed as a composite objective:

θ′ = argmin
θ′

(
E(x,y)∼Dr

[L(fθ′(x), y)]− λE(x,y)∼Df
[L(fθ′(x), y)]

)
, (2)

where L is a standard loss function (e.g., Cross-Entropy) and λ is a hyperparameter balancing the
two objectives. The core challenge is to optimize this objective without samples from Dr or Df .

4 Proposed Method: Unlearning via Differential Class Impressions

Our method addresses the zero-shot challenge by first generating synthetic data proxies (class
impressions) and then using them to drive a novel differential loss function that targets only the tail
of the model.

4.1 Data-Free Proxy Generation via Class Impressions

To create proxies for the unavailable data, we adopt the class impression generation technique from
Mopuri et al. [2018]. For each class c, we generate a class impression, x∗

c , by optimizing a random
noise vector to maximize the logit for that class. This process effectively synthesizes an input that the
model considers a quintessential example of class c. The optimization problem is:

x∗
c = argmax

x
fθ(x)c − β||x||22, (3)

where fθ(x)c is the logit for class c and the L2 regularization term encourages photorealism and
prevents extreme pixel values. We generate one set of impressions for the forget classes, Xf =
{x∗

c |c ∈ Cf}, and another for the retain classes, Xr = {x∗
c |c ∈ Cr}. These sets serve as our data-free

proxies for Df and Dr.

4.2 Tail-Model Modification for Efficient Unlearning

Deep networks learn hierarchical features. Low-level features (edges, textures) learned in early layers
are often general and shared across classes, while high-level, class-specific features are learned in
later layers. Unlearning should primarily target these later layers to be effective and efficient.

Based on this, we partition the model fθ into a frozen head gθhead
and a trainable tail hθtail

, such
that fθ(x) = hθtail

(gθhead
(x)). The split point is determined by identifying the first responsive layer

(e.g., the first fully connected layer or a late convolutional block) where class-specific features are
believed to emerge. All layers before this point are frozen (param.requires_grad = False), and
only the parameters of the tail model, θtail, are updated during unlearning.

4.3 The Differential Unlearning Loss

With our data proxies and tail-model strategy, we can now define our unlearning objective. Our
approach, directly implemented in the ZeroShotUnlearner class, uses a differential update rule
that pushes the model in opposite directions for forget and retain classes within the same optimization
process.

The total loss to be minimized is a weighted combination of a forget loss and a retain loss:

Ltotal = wf · Lforget − wr · Lretain (4)

where wf and wr are hyperparameters controlling the influence of each component.
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Forget Loss (Lforget). To make the model forget classes in Cf , we perform gradient ascent on
the classification loss for their corresponding impressions. This is equivalent to minimizing the
standard cross-entropy loss, pushing the model’s parameters away from correctly classifying these
impressions.

Lforget = Ex∗
c∈Xf

[CrossEntropy(hθ′
tail

(gθhead
(x∗

c)), c)] (5)

Retain Loss (Lretain). To preserve knowledge of classes in Cr, we perform gradient descent on the
classification loss for their impressions. This reinforces the model’s ability to correctly classify the
retain classes. The term is negated in the total loss function to achieve this effect.

Lretain = Ex∗
c∈Xr

[CrossEntropy(hθ′
tail

(gθhead
(x∗

c)), c)] (6)

By minimizing Ltotal, the optimizer takes steps that increase the forget loss (gradient ascent) while
decreasing the retain loss (gradient descent), achieving our dual objective efficiently.

4.4 Algorithm Summary

The complete unlearning procedure is summarized in Algorithm 1.

Algorithm 1 Zero-Shot Unlearning via Differential Class Impressions

1: Input: Trained model fθ, forget classes Cf , retain classes Cr, learning rate η, weights wf , wr,
epochs E.

2: Generate forget impressions Xf = {x∗
c |c ∈ Cf}.

3: Generate retain impressions Xr = {x∗
c |c ∈ Cr}.

4: Initialize unlearned model fθ′ ← fθ.
5: Partition fθ′ into frozen head gθhead

and trainable tail hθ′
tail

.
6: Initialize optimizer for parameters of hθ′

tail
.

7: for epoch = 1 to E do
8: Sample a batch of impressions {x∗

c} from Xf .
9: Compute Lforget =

1
|batch|

∑
CE(hθ′

tail
(g(x∗

c)), c).
10: Perform gradient step to minimize wf · Lforget.
11: Sample a batch of impressions {x∗

c} from Xr.
12: Compute Lretain = 1

|batch|
∑

CE(hθ′
tail

(g(x∗
c)), c).

13: Perform gradient step to minimize −wr · Lretain.
14: end for
15: Return: Unlearned model fθ′ .

5 Experiments and Results

We conducted extensive experiments to evaluate our method’s effectiveness, selectivity, and scalabil-
ity.

5.1 Experimental Setup

Datasets and Models. We used three standard datasets: MNIST (with LeNet5), CIFAR-10 (with
KarpathyNet, a custom 3-layer CNN), and ImageNet (ILSVRC 2012) (with AlexNet and ResNet50).

Evaluation Metrics.

• Forget Accuracy (FA): Accuracy of the unlearned model on the test set of the forgotten
classes (Cf ). Lower is better, with 0% indicating perfect forgetting.

• Retain Accuracy (RA): Accuracy of the unlearned model on the test set of the retained
classes (Cr). This measures knowledge preservation.

• Golden Standard Model (GSM): As a benchmark, we retrained models from scratch on
only the retain classes’ data.
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Implementation Details. Our framework was implemented in PyTorch. We used the AdamW
optimizer with a learning rate of 1e− 3 for smaller models and 1e− 4 for ImageNet models. Forget
and retain loss weights (wf , wr) were set to 0.9 and 0.1, respectively, based on empirical tuning.

5.2 Results Analysis

Our results, summarized in Table 1, demonstrate exceptional performance across all experimental
settings.

Table 1: Summary of Zero-Shot Unlearning Performance Across Models. Our method achieves
near-zero Forget Accuracy while maintaining or improving Retain Accuracy compared to the original
model.
Model Dataset Original Acc (%) Unlearned Acc (%) Forget Acc (%) Retain Acc (%)
LeNet5 MNIST 99.07 58.08 0.00 99.44
KarpathyNet CIFAR-10 72.36 56.16 0.00 80.23
AlexNet ImageNet 56.55 48.55 0.01 57.11
ResNet50 ImageNet 76.14 65.31 0.01 76.83

LeNet5 on MNIST. For MNIST, we unlearned classes {1, 2, 3, 4}. As shown in Figure 1, the
unlearned model achieves 0.00% accuracy on these classes. Remarkably, the retain accuracy on the
remaining classes slightly increased from 99.07% (original overall) to 99.44%, indicating no negative
impact.

Figure 1: Class-wise accuracies for LeNet5 on MNIST. The unlearned model (orange) shows near-
zero accuracy for forgotten classes (1-4, though bars are not visible due to 0 height) while maintaining
performance on retained classes.

KarpathyNet on CIFAR-10. We targeted classes {3, 4, 8} for unlearning. Figure 2 shows a
similar pattern of perfect forgetting. Most notably, the retain accuracy jumped significantly from
an original average of ∼72% to 80.23%. This suggests that unlearning can act as a regularizer,
potentially reducing inter-class confusion between the removed classes and the retained ones. A
comparison with the GSM shows our unlearned model achieves comparable, and in some classes
superior, performance.

Scalability to ImageNet. The true test of our method is its scalability. We targeted 100 classes for
removal from AlexNet and ResNet50 models pre-trained on ImageNet. As seen in Table 1, the results
are outstanding. We achieve near-perfect forgetting (0.01% accuracy) while slightly improving the
average retain accuracy for both models. Figure 3 and Figure 4 visualizes the change in accuracy
in AlexNet and ResNet50 respectively, with a catastrophic drop for all forgotten classes and minor,
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(a) Original vs. Unlearned Model (b) Unlearned vs. Golden Model

Figure 2: Class-wise accuracies for KarpathyNet on CIFAR-10. (a) Shows complete forgetting of
classes 3, 4, 8. (b) Shows the unlearned model’s performance is highly comparable to the Golden
Standard Model.

mostly positive, fluctuations for retained classes. This confirms that our method is not only effective
but also scales gracefully to deep, complex architectures.

Figure 3: Change in class-wise accuracy for AlexNet on ImageNet after unlearning. The red bars
show a massive accuracy drop (near -100%) for the targeted forgotten classes, while green bars show
stable or slightly improved accuracy for retained classes.

Figure 4: Change in class-wise accuracy for ResNet50 on ImageNet after unlearning. The red bars
show a massive accuracy drop (near -100%) for the targeted forgotten classes, while green bars show
stable or slightly improved accuracy for retained classes.

6 Conclusion and Future Work

In this paper, we presented a highly effective, scalable, and data-free framework for targeted class
unlearning in deep neural networks. By repurposing class impressions as data proxies and driv-
ing a differential loss function on a trainable tail-model, we achieved state-of-the-art unlearning
performance. Our method consistently demonstrates near-perfect forgetting of target classes while
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preserving, and often enhancing, performance on retained classes across diverse architectures from
LeNet5 to ResNet50.

This work opens several exciting avenues for future research.

Extension to Vision Transformers. A key next step is to adapt and evaluate our framework on
Transformer-based architectures like ViT and Swin-Transformers. This presents unique challenges:
how do class impressions manifest in patch-based, attention-driven models? The concept of a tail-
model may need to be redefined, perhaps by targeting specific attention heads or final MLP blocks
rather than sequential layers. Investigating the interplay between class impressions and self-attention
mechanisms is a promising direction.

Theoretical Guarantees. While our empirical results are strong, providing theoretical guarantees
of unlearning remains an open challenge. Future work could focus on formally proving that the
parameter distribution of our unlearned model is statistically indistinguishable from that of a Golden
Standard Model.

Finer-Grained Unlearning. The current framework focuses on class-level unlearning. Extending
this to instance-level or attribute-level forgetting in a zero-shot setting would significantly broaden its
applicability, for example, removing a single person’s face from a recognition model without access
to the original training photos.

Our method provides a robust foundation for building more secure and privacy-compliant AI systems,
demonstrating that forgetting, when done correctly, can be both efficient and precise.
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